5,494 research outputs found

    A full potential inverse method based on a density linearization scheme for wing design

    Get PDF
    A mixed analysis inverse procedure based on the full potential equation in conservation form was developed to recontour a given base wing to produce density linearization scheme in applying the pressure boundary condition in terms of the velocity potential. The FL030 finite volume analysis code was modified to include the inverse option. The new surface shape information, associated with the modified pressure boundary condition, is calculated at a constant span station based on a mass flux integration. The inverse method is shown to recover the original shape when the analysis pressure is not altered. Inverse calculations for weakening of a strong shock system and for a laminar flow control (LFC) pressure distribution are presented. Two methods for a trailing edge closure model are proposed for further study

    Nonlinear potential analysis techniques for supersonic-hypersonic configuration design

    Get PDF
    Approximate nonlinear inviscid theoretical techniques for predicting aerodynamic characteristics and surface pressures for relatively slender vehicles at moderate hypersonic speeds were developed. Emphasis was placed on approaches that would be responsive to preliminary configuration design level of effort. Second order small disturbance and full potential theory was utilized to meet this objective. Numerical pilot codes were developed for relatively general three dimensional geometries to evaluate the capability of the approximate equations of motion considered. Results from the computations indicate good agreement with higher order solutions and experimental results for a variety of wing, body and wing-body shapes for values of the hypersonic similarity parameter M delta approaching one. Case computational times of a minute were achieved for practical aircraft arrangements

    Nonlinear potential analysis techniques for supersonic aerodynamic design

    Get PDF
    A numerical method based on the conservation form of the full potential equation has been applied to the problem of three-dimensional supersonic flows with embedded subsonic regions. The governing equation is cast in a nonorthogonal coordinate system, and the theory of characteristics is used to accurately monitor the type-dependent flow field. A conservative switching scheme is employed to transition from the supersonic marching procedure to a subsonic relaxation algorithm and vice versa. The newly developed computer program can handle arbitrary geometries with fuselage, canard, wing, flow through nacelle, vertical tail and wake components at combined angles of attack and sideslip. Results are obtained for a variety of configurations that include a Langley advanced fighter concept with fuselage centerline nacelle, Rockwell's Advanced Tactical Fighter (ATF) with wing mounted nacelles, and the Shuttle Orbiter configuration. Comparisons with available experiments were good

    A computational model for three-dimensional incompressible wall jets with large cross flow

    Get PDF
    A computational model for the flow field of three dimensional incompressible wall jets prototypic of thrust augmenting ejectors with large cross flow is presented. The formulation employs boundary layer equations in an orthogonal curvilinear coordinate system. Simulation of laminar as well as turbulen wall jets is reported. Quantification of jet spreading, jet growth, nominal separation, and jet shrink effects due to corss flow are discussed

    Magnetic impurities in the honeycomb Kitaev model

    Full text link
    We study the effect of coupling magnetic impurities to the honeycomb lattice spin-1/2 Kitaev model in its spin liquid phase. We show that a spin-S impurity coupled to the Kitaev model is associated with an unusual Kondo effect with an intermediate coupling unstable fixed point K_c J/S separating topologically distinct sectors of the Kitaev model. We also show that the massless spinons in the spin liquid mediate an interaction of the form S_{i\alpha}^{2}S_{j\beta}^{2}/R_{ij}^{3} between distant impurities unlike the usual dipolar RKKY interaction S_{i\alpha}S_{j\alpha}/R_{ij}^{3} noted in various 2D impurity problems with a pseudogapped density of states of the spin bath. Furthermore, this long-range interaction is possible only if the impurities (a) couple to more than one neighboring spin on the host lattice and (b) the impurity spin is not a spin-1/2.$Comment: 4 pages, 3 figures, Published versio
    corecore